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Chapman-Enskog method and synchronization of globally coupled oscillators
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Escuela Politenica Superior, Universidad Carlos 1l de Madrid, Avenida Universidad 30, 28911 Legamain
(Received 18 May 2000

The Chapman-Enskog method of kinetic theory is applied to two problems of synchronization of globally
coupled phase oscillators. First, a modified Kuramoto model is obtained in the limit of small inertia from a
more general model that includes “inertial” effects. Second, a modified Chapman-Enskog method is used to
derive the amplitude equation for an O(2) Takens-Bogdanov bifurcation corresponding to the tricritical point
of the Kuramoto model with a bimodal distribution of oscillator natural frequencies. This latter calculation
shows that the Chapman-Enskog method is a convenient alternative to normal form calculations.

PACS numbds): 05.45-a, 05.20--y, 05.40:-a

[. INTRODUCTION exactly the usual Kuramoto modé,10]. An important tech-
nologically relevant application of this model is the study of
The Chapman-Enskog meth6@dEM) has long been used superconducting Josephson junction arrgy$,12. It has
to derive hydrodynamic equations of parabolic type frombeen shown that the usual Kuramoto modeith m=0)
kinetic equations of the Boltzmann type,2]. The complex-  describes series arrays in the limiting case of weak coupling
ity of these equations has perhaps hindered the realizatioi"d disorder of arrays with zero junction capacitafich. A
that the CEM is a powerful singular perturbation method thaurrently open problem is to derive a reduced model for the
can be used advantageously as a viable alternative to muiveraged system in the limiting case of weak coupling, weak
tiple scales or normal form calculations in different contexts diSorder, and nonzero junction capacitance. In so far as ca-

Motivated by recent work on the subject of models of Syn_pacitance plays the same role as inertia in simple electrical
chronization of phase oscillatof8-5|, | shall derive here netw%rks, th% Khurar?foto rr}odel with |r|1ert|§1 rrrlght be_ useful_

reduced equations for two different Kuramoto models byt0 understand the effect of nonzero electrical capacitance in
means of the CEM Josephson junction arrays.

The fi | d he limit of Il inerti In the limiting case of infinitely many oscillators, models
e first example corresponds to the limit of small inertia, iy, mean-field coupling are described by an evolution equa-

in a generalized Kuramoto model of globally coupled phasgis,y for the one-oscillator probability density( 6, w, 1)
oscillators[6]: [13]. For the present model this equatior{ 63

0= o, dp D #p 1 9 _
| E:ﬁﬁ_Eﬁ_w{[_w+Q+Krsm(w_0)]p}
Mo;=— w;+Q;+Krysin(gy— 0;) + &(1), 1)

. dap

j:].,...,N, _wﬁ, (3)
whered; , w;, and(); denote the phase, frequency, and natu,here the order parameter is now given by
ral frequency of thgth oscillator, respectively. The natural o i i
frequencies are distributed with probability densg{(}), re“ffzf f f €%0(6,0,0,)g(Q)dQdwd.
which may have a single maximufunimodaldistribution 0 J-wJ-w
or several peakémultimodaldistribution). The positive pa- (4)

rametersm and K are the “inertia” and the coupling Equations(3) and(4) should be supplemented with appropri-

strength, respectively. The complex order parameter definegke initial and boundary data (is 27 periodic in 6 and has

by suitable decay behavior as— * ) plus the normalization

1 N condition

ryen=— > gl 2 2 [+
N N ;1 @ f f p(6,0,Q,t)dwdd=1. (5)
0 — o0

measures phase synchronization: in the limitNas«<, Iy An extensive study of oscillator synchronization in the
>0 if the oscnlatqrs are synch_romz_ed an,qi_:O_ if not. Fi-  model (3)—(5) was carried out in a previous papks] by
nally, the¢;’s are independent identically distributed Gauss-ysing different analytical and numerical techniques. The lim-
ian white noises, witl{&;) =0, (&(t)§;(s))=2D5;;6(t—s).  iting case of small inertiam—0, was analyzed by an arbi-
Without white noise terms, these equations were proposed @ary three-mode truncation of a mode-coupling expansion of
account for synchronization of biological systerfig,8].  p [5]. It is rather intriguing that exactly the same small iner-
When the inertial terms vanism=0, Eqs.(1) and(2) are tia results had been obtained earlier by Hagl. [4] using
completely different methods. Honet al. obtained first a
reduced Smoluchowski type equation, and then analyzed this
*Email address: bonilla@ing.uc3m.es reduced equation. The derivation of the reduced equation

1063-651X/2000/6@)/48627)/$15.00 PRE 62 4862 ©2000 The American Physical Society



PRE 62 CHAPMAN-ENSKOG METHOD AND SYNCHRONIZATION . .. 4863

consisted of truncating a moment hierarchy for the Fokkertion condition and the definition of the order parameter dic-
Planck equation, as explained by Schneieleal. [14]. Both  tate thatg({) andp are to be measured in units ofudy too.
procedures yielded correctly the linear term of the amplitudeThe angled is already dimensionless.
equation describing the synchronization transition, but not Recapitulatingw, €, andK are measured in units of the
the cubic term in this equation. In this paper, we shall obtairthermal velocityw,, while p, g(€Q), and time are measured
a consistent reduced Smoluchowski type equation by usingn units of the reciprocal velocity &l,. Then the dimension-
the CEM. less Fokker-Planck equation is

Our second example corresponds to the particular case of )
setting m=0 and g(Q)=1/2[ 5(Q—Qg)+ (2 +Qg)] in o |or A N P
Eqg.(1). Then the phase diagram of the incoherent probability Jdw | dw FlotKrsin-y) Q]p] €| at +w<90
densityp=1/(27) contains a tricritical point where a line of (8)
Hopf bifurcations intersects tangentially a line of homoclinict0 be solved together with Eq&) and (5) and appropriate
orbits at zero frequency. The resulting Takens-Bogdanov bi-~ -~ . . "~. .. s
furcation with O(2) symmetry was analyzed [i8] by mul- periodicity, initial, and decay conditions as— =+ ».

. ) ) A different “parabolic” scaling is usual in kinetic theory:
tiple scale techniquefl5]. A shortcoming of these tech- in it the term [Kr sin(0—y)—Qlp, is O(e) and the time

niques is that all terms in the corresponding amplitude erivative isO(€?). Using the CEM with this scaling yields

equation are necessarily of the same order, while terms %he standard Kuramoto model with="0 as a leading order
different order are needed to describe the Takens-Bogdanqy 9

. . .~ _approximation, while higher order modifications contain de-
point. We shall show here how to adapt multiple scale ideas." .. . ) . -
. R fivatives of order 4 ind and higher. We think the “hyper-
using the CEM to overcome this difficulty. Although the | " - S ;
. ) DT ; bolic scaling” (8) will yield results that are valid over a
resulting amplitude equation is known, the calculation pre- . .
. . . . much larger range of independent variables and of param-
sented here is of independent interest to illustrate the POSSiars
sible applications of our presentation of the CEM to deriving '
amplitude and bifurcation equations containing different
asymptotic orders. Chapman-Enskog method
The rest of the paper is as follows. The Smoluchowski Settinge=0 in Eq.(8), we find a simple equation to be
equation for the small inertia limit of the Kuramoto model splved together with Eqg4) and (5). Its solution is a dis-
with inertia is derived in Sec. Il. Section Il contains the placed Maxwellian:

application of the CEM to finding bifurcation equations. Af-

ap &p)

_\2
ter explaining how the procedure works for the well-known _© Ve
Hopf bifurcation, we describe how to obtain the normal form p= \/2— P(6,Q,0), ©
corresponding to an @)-symmetric Takens-Bogdanov bi- ™
furcation for 'ghe bimodal Kuramoto mpdeMthout inertia. V=w+Krsin(6—¢)—Q, (10)
The last section contains our conclusions.
2@ (oo
— i(6—

Il. CHAPMAN-ENSKOG METHOD FOR THE r—fo J_we'( YP(0,Q,0)deg(Q)dQ, (1D

GENERALIZED KURAMOTO MODEL IN THE LIMITING
CASE OF SMALL INERTIA 27
i ) ) _ ) f P(6,Q,t)do=1. (12
To find a reduced equation, we should first nondimension- 0

alize Eqs(3) and(4) in an appropriate way. The main idea is
that the force terms and diffusion in velocity space should b
dominant. Then the probability densipyrapidly reaches lo-
cal equilibrium in velocity and its slowly varying amplitude
obeys a Smoluchowski equation. This means thaand K
should have the same order as and that the terms

é\lotice thatP(6,0Q,t) is an arbitrary function of§ andt
except in Eq(12). Furthermore, E¢(9) correspond to a par-
ticular form of the initial conditions. The Chapman-Enskog
ansatz consists of assuming that has the following
asymptotic expansion:

m Y wp), and O/m?)p,, should be of the same order o V22 %
(subscripts mean the partial derivative with respect to the p= P(6,Q.t;e)+ >, €pM(0,0,Q;P). (13
corresponding variablelf we call wq a typical unit of ve- N2 n=1

locity, the latter balance yields the following velocity scale: ) - )
Furthermore, we impose the condition that the amplitede

D obeys the equation
@o= \/ (6)
(9 o
which is just the thermal velocity. The ratio afp, to E:nzo e"FV(P), (14)
m~ Y wp),, is of the order -
e=JymD @) whereF (™ are functionals oP to be determined as the pro-

cedure goes on. This equation f@ris not explicitly written
which will be our small dimensionless parameter. Lastly, wein the usual presentations of the CE12]. Instead, the form
shall choose the time unit so thatandwp, are of the same  of this equation is guessed by writing equations for the mo-
order. This choice is dictated by the mechanics of the CEMments ofp and using gradient expansions. We find this latter
(see belowand yields a time unity=1/wy. The normaliza- procedure more confusing.
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Insertion of Egs.(13) and (14) into the equations and Inserting now Eq.(20) in Eg. (15), we realize that the
auxiliary conditions yields a hierarchy of linear equations forright hand side thereof is the partial derivative of some ex-
the p("™. Notice that the latter depend on time only throughpression with respect t@. This greatly helps in finding the
their dependence oR. The functionalsF(W(P) are deter- solution
mined so that each equatidand set of auxiliary conditions

for p(“) has a solution that is bounded for all valueswf e*VZ/Z \Va |
even asw— * . Once a sufficient number &™ is deter- pM= PKr(©® cog 6— )
mined, Eq.(14) is the sought amplitude equatioRlease \/Z
notice that, unlike results from the method of multiple scales,  (0) i 0
terms in Eq.(14) may be of different order. +VKP{rsin(0—y) — 1™y cog - ¢)
Let us illustrate how the procedure works by findigg’
andF®). Insertion of Eqs(13) and(14) in Egs.(8), (4), and —[Kr©sin(g— ) — Q]r@ cog 6— )} —P,) |,
(5) yields the following hierarchy of linear equations:
we- V22 (21
LpW= [Py—VPKr®cog6—y)]

which satisfies Eq(17) and yieldsr®=0. Notice that a

o
term of the form(9) (satisfying fﬁ”Pd0=0) could have
g Vi2 . been added to the solutig@1). However, all such terms are
+ {FO-VPKrsin(6— ) already contained in the ansat¥3) with P=P(6,0,t;¢),
2m and we shall therefore omit them.
©); To find F), we insert Eq.(21) in Eq. (16) and use the
—rycod 6=y, (15 solvability condition for this equation. Simplifications arise
V2 from the identities
LpP)= FO+Kr®sin(9—¢)plH B 5
2m J pgl)dw=ﬁf pPdw=0
+wp§+pPp —ro), (16)

and so on. These equations are to be supplemented by tﬁgd
normalization condition$12) and

© é] ©
o oo fﬁxwpfgl)dwz &—afixwp(l)dw.
fo f, pMdodw=0, 17

_ The result is
and the definitions

joe) oo (9 . .
r(n):fzﬂf f -0 ) adwg(0)d0, (18 T =5 Pat{IKrOsin(0—y)— 0+ yIKr @ cog 6y
0 —oo J —©

v —Kr@sin(6—)}P). (22)
LpM=[VpW+pM] — Kr(™ sin(6— ), : :
i A - rsin(6— ) In this expressiont(®) and ¢ can be found from their defi-
(19) nitions and Eq(20). Integration by parts yields
for n=1,2,... .V is now given by Eq.(10) with r=r(® 0 (0); Kr© A6 s Oy i (01
given by Eq.(11). Lastly,r(® andy are calculated by taking FEHry= (1—(e ) +iQe )=
the time derivative of Eq(11) and using the first term in Eq.
(14) to replaceP, by F(©, . ) 0/ .
Let us now consider Eq15). Since thew integral of its rO=KrO(sin?(6—y)) —(Q sin(6— ),

left hand side is zero, this equation has a solution only if the
w integral of its right hand side is zero. The corresponding ©0): Kr©®
integrals are simplified by using the symmetry of the Max- ry=(Q cog6—y))— ——(sin2(6-¢)]), (23
wellian and shifting integration variables from to V. The
vanishing of the integral of the right side yields where

FO={[Kr©®sin(6—)— Q]P},. (20)

2m (oo
Notice that we needeB(®) in the right side of Eq(15) for (1(60.Q))= fo f_wf(a,Q)P(e,Q,t;e)dag(Q)dQ.

this equation to have an appropriate solution. In tuF) (24)
appeared in this equation due to our choice of the time unit.

Thus the time unit is dictated by the solvability conditions of We can now insert Eq$20), (22), and(23) into Eq.(14) to
the hierarchy of equations generated by the CEM. obtain the sought Smoluchowski equation For
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9 . terms that decay exponentially fast to zero as time increases.
P—=5 [Kr©@sin(6—y)— Q][ 1+ eKr® cog 6— )] ¢, is the eigenvector correspondingito, andA is a com-
plex constant.

Kr© To apply the CEM to this problem, we shall assume
—eK Cose_ lﬂ)( 2 <S|r{2(0_ lﬂ)]> a=als+a282+0(s3),
—(Q cog 6— ¢)>) — eK sin(6— ¢)[KrO(sir?(9— )) u=eA(t;e) e “ot+c.ct+ >, "uM(t;AA), (29
n=2
(Qsin(0—y))]|P+eP,l =0 25 where the amplitud@ obeys the ansatz
_ _ 1 =0.

©

dA _
= E ng(n)
Restoring the original dimensional units, this equation be- dt =1 e FAA). (29

comes _
P Here A is the complex conjugate ok and c.c. means the
P.— —ITKr sin(6— ) — Q11+ mKr cod §— complex conjugate of the p.recedi.ng term.'The parameter
t aaH[ no=¢) I 0-9)] measures the size of the bifurcating amplitude and its rela-
tion to the bifurcation parameter is determined by finding

Kr . . - 2
—mKcos 6— )| —(sin2(o— the coefficientsy; . Notice thatA varies slowly with time(on
S( d/)( 2 (sin2(6-¢)]) a scalee’t, as we will seg The functionsu™ depend on a
fast scalet corresponding to stable exponentially decaying
—{(Q cog H— —mKsin( 68— [ Kr{sird(6— modes, andn a slow time scale through their dependence
< s lp») (o= )IKr(sim(6-9)) on A All terms in Eq.(28) that decrease exponentially in

time will be omitted.a,, andF(™ are determined so that the
P+ Dpe] =0. (26) solutionsu™ are bounded as— (on the fast time scale

for fixed A. Substitution of Eq.(28) and (29) in Eq. (27)
yields the following hierarchy of linear equations:

—(Qsin(0—¢))]

to be solved together with E@l1), definition (24), normal-
ization condition(12), 27-periodicity in 8, and appropriate [L(0)—iwo]o=0,
initial conditions. du®
Equation(26) is the main result of this section. h=0, T
the usual Kuramoto model for phase oscillators is recovered.
Comparing this result with Ed5) of Honget al,, we see that 1 ‘
the second and third terms proportional toin the drift +c.ct Efuu(O;O)i(A¢>oe"°°t+C-C-)Z,
current were missing and that their equation contained an
additional diffusive term. The latter would be orderin our (30
scheme. These differences can be tracked to the fact that qy(®
Hong et al. followed a previous pap€drl4], whose authors
used a moment method with arbitrary closure assumptions to
derive the Smoluchowski equation. + a,L"(0) poA€ @0t +c.c.

—L(0)uP=—FDge'@dt+c.ct a L’ (0)poAe o

_L(O)U(3)= al( .. ')_F(2)¢Oeim0t+C.C.

Ill. DERIVATION OF BIFURCATION EQUATIONS

1 .
_ . .1(2) iwot
BY THE CHAPMAN-ENSKOG METHOD +51uu(0;0):u(Agee 0+ c.C)

First of all, we shall illustrate the application of the CEM

to a well-known case: deriving the amplitude equation for + gfuuu(o;o)i(A%e'wotJfC-C-)S,

the usual Hopf bifurcation. Next the much more complicated

calculation of the amplitude equation for the tricritical point (3

of the bimodal Kuramoto model will be tackled. and so on. Herd,,(0;0) is annxn matrix and the colon

means tensor contraction, etc. The first equation holds iden-
A. The usual Hopf bifurcation tically due to the definitions o, andi wy. The other equa-

Let us consider a system ofordinary differential equa- tions should be solved for bounded!” ast—o. iTr:ew SO-

tions for an unknowm-component vectou(t; a): lutions should not contain terms of the foBpye'“0"+c.c.,

solving the corresponding linear homogeneous problem. The

ﬂ=f(u- ): (27) eason for this latter requirement is that all such terms are
dt s already contained if\(t;¢).

a is the bifurcation parameter. We shall assume thad is Equation(30) yields

a linearly stable solution ix<<O and that it is unstable if a,;=0, FW=0,

a>0. All eigenvalues oflL(a)=4df(0,a)/du except\(«)

and its complex conjugate have negative real parts in the 2 20ttt 1 2
neighborhood ofx=0. We have\(a)~iwy+aN’(0) asa ul )_7el [2iwol =L(0)] fuu(0;0): b

—0, with Re \'(0)>0. The linearized equation of27)

aboutu=0, a=0 has the solutiom=Adg,e'“'+c.c., plus +c.c—|A|2L(0) 1 ,,(0;0): poobo. (32

2
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(I is the identity matrix of orden.) Solvability of Eq.(31)
yields

F@=a,\"(0)A— uA|A|?, (33

where

(¢3,L"(0) o)

\'(0)=
(4. bo)

; (34)

T 1 T AN L
<¢O!¢O>M: E<¢O!fuu(o’0)-¢0
X[L(0)—i2wol ]~ ,,(0;0): ¢3)
+( b3, Fuu(0;0): oL (0) 2 ,,(0;0): oo )

1
— 5(#8.Fuul0:0): 65bo).- (35

Hereq&g is the eigenvector corresponding to the adjoint prob-

lem

LT(0)po=iwoh).

Substituting these results in ER9), the following ampli-
tude equation is found:

L. L. BONILLA

PRE 62

B. Symmetric Takens-Bogdanov bifurcation

Our starting point in this subsection is the standard Kura-
moto model with bimodal natural frequency distribution, i.e.,
Eq. (26) with m=0 and g(Q)=3[8(Q— Q)+ 6(Q
+Qg)]. The phase diagram of the incoherent solut®n
=1/(27) was depicted in Fig. 1 df3]. At the tricritical point
P=(K/D=4,,/D=1) a branch of Hopf bifurcations coa-
lesces with a branch with stationary bifurcations and a
branch of homoclinic orbits, in an(@)-symmetric Takens-
Bogdanov bifurcation point. A method of multiple scales
was used i3] to analyze this complicated bifurcation. This
method was not completely satisfactory because it led to two
amplitude equations whose solutions were later interpreted
as the two terms of a normal form expansi@]. Let us
show how a modified CEM leads directly to the amplitude
equation. Near the tricritical point, we may define an expan-
sion parameteg so that

K=K +Kpe2+0(e3), Q=0+ 0ye2+0(e)

(Kc=4D,Q0.=D). (37

The basic slow time scale near the tricritical poinflis et,

and the method of multiple scales shows that resonant terms
appear in the equations of ordet and higher3]. Borrow-

ing from the results of that referen¢ehich includes making

an exponential ansatz fd?), we shall make the following

dA
a:gzaz)\’(o)A—szﬂA|A|2+ O(&d). (36)  Chapman-Enskog ansatz:
. . . . 1 A(T:e) .
These formulas for the bifurcation equation and its coef- P(6,Q,t;e)= Eex sme'0+ c.C.

ficients have been obtained many times before;[46¢for

an equivalent explicit determination @f, whose real part
decides whether the bifurcation is sub- or supercritical. If
Reuw=0, we should calculate higher order terms in the
Chapman-Enskog expansid29). The systematic way in
which the CEM yields such terms is a great advantage with

respect to other methods such as multiple scil&

4
+22 elo(6,t,T;A)+0(e% |, (39
=

Arr=FO(A)+eFD(A)+0(e?). (39)
Terms that decay exponentially on the fast time staléll

Similar ideas can be used to derive amplitude equationbe systematically omitted. The equation fois second order
for pattern forming systems governed by partial differential[not first order like Eq(29)] because resonant terms appear
equationg17]. In such cases, we have to rescale space variat O(&°) for the first time and they are proportional Ag.

ables appropriately and assume that E4® also depend on

spatial derivatives oA.

Inserting these equations in E&6) (with m=0), we obtain
the following hierarchy of linear equations:

Ui ~i6) i 60" Are'’
L 02+7 =—4Ddy(o,Ime e ,ol>)—D+iQ+c.c.,
(40)
2 2
T (o]
J 0'2+_ d0=0,
0
0'% ) Sy (o] 0'% . Ly . L
L 0‘3"’0’10’2‘*’? =—4Do7,, 0‘1|m67|0 ele ,0'2"’? + 0'2+? Ime7|0<e|0 ,0'1>+Qz|me7|0<e|0 ,(Tl>’
0_2
_Kzaglme_i0<e_ial,0'1>_(9*|— O'2+?l y
(41)

fZ"IT
0

1
0'3+O'10'2+€

2
de=0,
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2 2 4 3
() 0,03 (o)

3
) o o o . .
L| o4+ 0103+ ?—I-T-I-I =—4Ddy| o1 1M e"“’< e 'f ,03+0'10'2+€1> +| o3t o0+ Fl Ime~'%e'" o)
2\ 1 2
Y o Lo o
+Qz|me|0<e|0 ,(72+?l> +Qz(71|mele<e|0 ,(Tj_>,+ 0'2+?l
2 2
) o o ) o [oa
XIm e|0< ele ,0'2+?1>}_K25‘9 Im e|6< elf) ,0'2+?1>
2
. Ly (o)
+o,lme %'l ,0'1>> — 7| o3t o0+ > |
(42)
2 o} ofo, of
fo 0'4+<Tla'3+7+ > +E do=0.
|
Here o A A2
1 i 2i 0
o o9+ —=——"—€""4+c.ct - ——e
Lon= (3~ D2+ 03, oa+4Dd,(Ime 1 %el? o)), 2 (D+iQ)? (D+iQ)(2D+iQ)
(43 +c.c.. (48)
and we have used the abbreviations=A(T;e)e'?/(D
+iQ)+c.c. and Note that one term proportional ®%(D+i€) and other
terms decaying on the fast scalare solutions ofCU=0
(a(6,9),8(6,Q)) and could have been added to E48). According to what
1 (2m [+ was said above, all such terms are to be omitted.
=5~ f a(0,Q)B(0,02)g(Q)dodQ, We now insert Eq.(48) in Egs. (41) and (42) together
TIo e with the CE ansatz39). The solution of Eq(41) is
(44)
3
) K,—4Q F©
(a(6,0),8(6.0)) ] prace.

—= ——A+
L rom e 6 4D(D+iQ) (D+iQ)3
=5 . wa a(ﬁ,Q)B(G,Q)g@O(Q)dﬁdQ,

NAE ),
- e?+c.c.
(45) (D+i0)?%(2D+iQ)
where AA{1/(D+iQ)+1/(2D+iQ)] 210
(D+i0)(2D+i)
1 .
90,(Q)=5[8"(Q+00) = 5"(Q2 = Q) ](Qo=0c=D). s A3edi?
(46) “CT D+iN)(2D+i0)(3D+i1Q)
The ansatz39) has not yet been inserted in Eq40) and +c.c. (49)

(42) in order not to complicate these equations further. We

shall keep in mind that these equations will have to be modifrom this we obtainr, and finally, from Eq.(42), o4. To

fied later when the solution of Eq40) is inserted in Egs. obtain the leading order approximation, we only need to de-

(41) and (42). The linear equations in the preceding hierar-termineA(T;e). Now, Eq.(49) holds provided that thaon-

chy should have solutions periodic th A solution of the  resonance conditiofneeded to remove secular tepms

homogeneous equatiofU =0 could be added to the solu-

tions of the linear nonhomogeneous equations in the preced-

ing hierarchy. However, all such terms are to be omitted, for <_

the amplitudeA(T;e) already takes care of them. D+iQ’
The solution of Eq(40),

P(Q,T;A)> =0 (50)

holds, whereP(Q,T;A) denotes the coefficient @ ? on the
right hand side of Eq(41) [3]. Equation(50) yields

0_2

1
0'2+?

2

e?f+c.c.,

(47)

i0
brin® "¢ piia

L

©_D 2
FO=2 (Ko~ 4Q,)A+Z|APA. (51)
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The functionF®) is determined from a similar nonreso- Chapman-Enskog method to find directly the scaled normal
nance condition for Eq42): the coefficientQ({2,T;A) of  form corresponding to the (@)-symmetric Takens-
e'? on the right hand side of Eq42) should also satisfy Eq. Bogdanov bifurcation at the tricritical point of a standard

(50). The result is Kuramoto model with bimodal distribution of oscillator natu-
5 ral frequencies. Key ingredients of the CEM diesolving a
cw_Kz2, (Al A)T—£|A|2A (57  Zeroth order problem whose solution is determined up to
27T 5D 25D T certain amplitude functiongji) assuming an expansion for

. _ . the solution all of whose higher order terms depend on
Insertion of Eqs(51) and(52) into Eq.(39) yields the sought  (slow) time through the amplitude functions onlgiii) as-

amplitude equation: suming that the right sides of the equations of motion for the
D 5 amplitude functions are expansions whose coefficients are
(K _Zial2 functionals of the amplitudes. These coefficients are deter-
Arr— 5 (Ka—4Q)A—|Al*A : . = " ,
2 S mined by appropriate solvability conditions for the hierarchy

of linear equations resulting from insertion of all these as-
sumptions in the original equations. Collecting the desired
number of coefficients, we obtain approximate equations of
(53 motion for the amplitude functions as the result of the

_ o . . _ method. | believe that the techniques explained in the present
This equation is the scz_;lled norma! form” studied by Dan- paper will be useful in many other problems of physical
gelmayr and Knobloch if18] [cf. their Eqs.(3.3), p. 2480.  jnterest.

The general analysis developed in that reference for general
scaled normal forms was employed[i8] to study Eq.(53)
and will not be repeated here. ACKNOWLEDGMENTS
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