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Chapman-Enskog method and synchronization of globally coupled oscillators

L. L. Bonilla*
Escuela Polite´cnica Superior, Universidad Carlos III de Madrid, Avenida Universidad 30, 28911 Legane´s, Spain

~Received 18 May 2000!

The Chapman-Enskog method of kinetic theory is applied to two problems of synchronization of globally
coupled phase oscillators. First, a modified Kuramoto model is obtained in the limit of small inertia from a
more general model that includes ‘‘inertial’’ effects. Second, a modified Chapman-Enskog method is used to
derive the amplitude equation for an O(2) Takens-Bogdanov bifurcation corresponding to the tricritical point
of the Kuramoto model with a bimodal distribution of oscillator natural frequencies. This latter calculation
shows that the Chapman-Enskog method is a convenient alternative to normal form calculations.

PACS number~s!: 05.45.2a, 05.20.2y, 05.40.2a
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I. INTRODUCTION

The Chapman-Enskog method~CEM! has long been use
to derive hydrodynamic equations of parabolic type fro
kinetic equations of the Boltzmann type@1,2#. The complex-
ity of these equations has perhaps hindered the realiza
that the CEM is a powerful singular perturbation method t
can be used advantageously as a viable alternative to
tiple scales or normal form calculations in different contex
Motivated by recent work on the subject of models of sy
chronization of phase oscillators@3–5#, I shall derive here
reduced equations for two different Kuramoto models
means of the CEM.

The first example corresponds to the limit of small iner
in a generalized Kuramoto model of globally coupled pha
oscillators@6#:

u̇ j5v j ,

mv̇ j52v j1V j1Kr N sin~cN2u j !1j j~ t !, ~1!

j 51, . . . ,N,

whereu j , v j , andV j denote the phase, frequency, and na
ral frequency of thej th oscillator, respectively. The natura
frequencies are distributed with probability densityg(V),
which may have a single maximum~unimodaldistribution!
or several peaks~multimodaldistribution!. The positive pa-
rameters m and K are the ‘‘inertia’’ and the coupling
strength, respectively. The complex order parameter defi
by

r NeicN5
1

N (
j 51

N

eiu j ~2!

measures phase synchronization: in the limit asN→`, r N
.0 if the oscillators are synchronized andr N50 if not. Fi-
nally, thej j ’s are independent identically distributed Gaus
ian white noises, witĥj j&50, ^j i(t)j j (s)&52Dd i j d(t2s).
Without white noise terms, these equations were propose
account for synchronization of biological systems@7,8#.
When the inertial terms vanish,m50, Eqs.~1! and ~2! are
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exactly the usual Kuramoto model@9,10#. An important tech-
nologically relevant application of this model is the study
superconducting Josephson junction arrays@11,12#. It has
been shown that the usual Kuramoto model~with m50)
describes series arrays in the limiting case of weak coup
and disorder of arrays with zero junction capacitance@11#. A
currently open problem is to derive a reduced model for
averaged system in the limiting case of weak coupling, we
disorder, and nonzero junction capacitance. In so far as
pacitance plays the same role as inertia in simple electr
networks, the Kuramoto model with inertia might be use
to understand the effect of nonzero electrical capacitanc
Josephson junction arrays.

In the limiting case of infinitely many oscillators, mode
with mean-field coupling are described by an evolution eq
tion for the one-oscillator probability densityr(u,v,V,t)
@13#. For the present model this equation is@6#

]r

]t
5

D

m2

]2r

]v2
2

1

m

]

]v
$@2v1V1Kr sin~c2u!#r%

2v
]r

]u
, ~3!

where the order parameter is now given by

reic5E
0

2pE
2`

1`E
2`

1`

eiur~u,v,V,t !g~V!dVdvdu.

~4!

Equations~3! and~4! should be supplemented with approp
ate initial and boundary data (r is 2p periodic inu and has
suitable decay behavior asv→6`) plus the normalization
condition

E
0

2pE
2`

1`

r~u,v,V,t !dvdu51. ~5!

An extensive study of oscillator synchronization in th
model ~3!–~5! was carried out in a previous paper@5# by
using different analytical and numerical techniques. The li
iting case of small inertia,m→0, was analyzed by an arbi
trary three-mode truncation of a mode-coupling expansion
r @5#. It is rather intriguing that exactly the same small ine
tia results had been obtained earlier by Honget al. @4# using
completely different methods. Honget al. obtained first a
reduced Smoluchowski type equation, and then analyzed
reduced equation. The derivation of the reduced equa
4862 ©2000 The American Physical Society
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PRE 62 4863CHAPMAN-ENSKOG METHOD AND SYNCHRONIZATION . . .
consisted of truncating a moment hierarchy for the Fokk
Planck equation, as explained by Schneideret al. @14#. Both
procedures yielded correctly the linear term of the amplitu
equation describing the synchronization transition, but
the cubic term in this equation. In this paper, we shall obt
a consistent reduced Smoluchowski type equation by u
the CEM.

Our second example corresponds to the particular cas
setting m50 and g(V)51/2@d(V2V0)1d(V1V0)# in
Eq. ~1!. Then the phase diagram of the incoherent probab
densityr51/(2p) contains a tricritical point where a line o
Hopf bifurcations intersects tangentially a line of homoclin
orbits at zero frequency. The resulting Takens-Bogdanov
furcation with O(2) symmetry was analyzed in@3# by mul-
tiple scale techniques@15#. A shortcoming of these tech
niques is that all terms in the corresponding amplitu
equation are necessarily of the same order, while term
different order are needed to describe the Takens-Bogda
point. We shall show here how to adapt multiple scale id
using the CEM to overcome this difficulty. Although th
resulting amplitude equation is known, the calculation p
sented here is of independent interest to illustrate the p
sible applications of our presentation of the CEM to derivi
amplitude and bifurcation equations containing differe
asymptotic orders.

The rest of the paper is as follows. The Smoluchow
equation for the small inertia limit of the Kuramoto mod
with inertia is derived in Sec. II. Section III contains th
application of the CEM to finding bifurcation equations. A
ter explaining how the procedure works for the well-know
Hopf bifurcation, we describe how to obtain the normal fo
corresponding to an O(2)-symmetric Takens-Bogdanov b
furcation for the bimodal Kuramoto model~without inertia!.
The last section contains our conclusions.

II. CHAPMAN-ENSKOG METHOD FOR THE
GENERALIZED KURAMOTO MODEL IN THE LIMITING

CASE OF SMALL INERTIA

To find a reduced equation, we should first nondimensi
alize Eqs.~3! and~4! in an appropriate way. The main idea
that the force terms and diffusion in velocity space should
dominant. Then the probability densityr rapidly reaches lo-
cal equilibrium in velocity and its slowly varying amplitud
obeys a Smoluchowski equation. This means thatV and K
should have the same order asv, and that the terms
m21(vr)v and (D/m2)rvv should be of the same orde
~subscripts mean the partial derivative with respect to
corresponding variable!. If we call v0 a typical unit of ve-
locity, the latter balance yields the following velocity scal

v05AD

m
, ~6!

which is just the thermal velocity. The ratio ofvru to
m21(vr)v is of the order

e5AmD, ~7!

which will be our small dimensionless parameter. Lastly,
shall choose the time unit so thatr t andvru are of the same
order. This choice is dictated by the mechanics of the C
~see below! and yields a time unitt051/v0. The normaliza-
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tion condition and the definition of the order parameter d
tate thatg(V) andr are to be measured in units of 1/v0 too.
The angleu is already dimensionless.

Recapitulating,v, V, andK are measured in units of th
thermal velocityv0, while r, g(V), and time are measure
in units of the reciprocal velocity 1/v0. Then the dimension-
less Fokker-Planck equation is

]

]v H ]r

]v
1@v1Kr sin~u2c!2V#rJ 5eS ]r

]t
1v

]r

]u D ,

~8!

to be solved together with Eqs.~4! and ~5! and appropriate
periodicity, initial, and decay conditions asv→6`.

A different ‘‘parabolic’’ scaling is usual in kinetic theory
in it the term @Kr sin(u2c)2V#rv is O(e) and the time
derivative isO(e2). Using the CEM with this scaling yields
the standard Kuramoto model withm50 as a leading orde
approximation, while higher order modifications contain d
rivatives of order 4 inu and higher. We think the ‘‘hyper-
bolic scaling’’ ~8! will yield results that are valid over a
much larger range of independent variables and of par
eters.

Chapman-Enskog method

Settinge50 in Eq. ~8!, we find a simple equation to b
solved together with Eqs.~4! and ~5!. Its solution is a dis-
placed Maxwellian:

r5
e2V2/2

A2p
P~u,V,t !, ~9!

V5v1Kr sin~u2c!2V, ~10!

r 5E
0

2pE
2`

`

ei (u2c)P~u,V,t !dug~V!dV, ~11!

E
0

2p

P~u,V,t !du51. ~12!

Notice that P(u,V,t) is an arbitrary function ofu and t
except in Eq.~12!. Furthermore, Eq.~9! correspond to a par
ticular form of the initial conditions. The Chapman-Ensko
ansatz consists of assuming thatr has the following
asymptotic expansion:

r5
e2V2/2

A2p
P~u,V,t;e!1 (

n51

`

enr (n)~u,v,V;P!. ~13!

Furthermore, we impose the condition that the amplitudeP
obeys the equation

]P

]t
5 (

n50

`

enF (n)~P!, ~14!

whereF (n) are functionals ofP to be determined as the pro
cedure goes on. This equation forP is not explicitly written
in the usual presentations of the CEM@1,2#. Instead, the form
of this equation is guessed by writing equations for the m
ments ofr and using gradient expansions. We find this lat
procedure more confusing.
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Insertion of Eqs.~13! and ~14! into the equations and
auxiliary conditions yields a hierarchy of linear equations
the r (n). Notice that the latter depend on time only throu
their dependence onP. The functionalsF (n)(P) are deter-
mined so that each equation~and set of auxiliary conditions!
for r (n) has a solution that is bounded for all values ofv,
even asv→6`. Once a sufficient number ofF (n) is deter-
mined, Eq. ~14! is the sought amplitude equation. Please
notice that, unlike results from the method of multiple scal
terms in Eq.~14! may be of different order.

Let us illustrate how the procedure works by findingF (0)

andF (1). Insertion of Eqs.~13! and~14! in Eqs.~8!, ~4!, and
~5! yields the following hierarchy of linear equations:

Lr (1)5
ve2V2/2

A2p
@Pu2VPKr(0) cos~u2c!#

1
e2V2/2

A2p
$F (0)2VPK@ ṙ (0) sin~u2c!

2r (0)ċ cos~u2c!#%, ~15!

Lr (2)5
e2V2/2

A2p
F (1)1Kr (1) sin~u2c!rv

(1)

1vru
(1)1r t

(1)uPt5F(0), ~16!

and so on. These equations are to be supplemented b
normalization conditions~12! and

E
0

2pE
2`

`

r (n)dudv50, ~17!

and the definitions

r (n)5E
0

2pE
2`

` E
2`

`

ei (u2c)r (n)dudvg~V!dV, ~18!

Lr (n)5@Vr (n)1rv
(n)#v2

Ve2V2/2

A2p
Kr (n) sin~u2c!,

~19!

for n51,2, . . . . V is now given by Eq.~10! with r 5r (0)

given by Eq.~11!. Lastly, ṙ (0) andċ are calculated by taking
the time derivative of Eq.~11! and using the first term in Eq
~14! to replacePt by F (0).

Let us now consider Eq.~15!. Since thev integral of its
left hand side is zero, this equation has a solution only if
v integral of its right hand side is zero. The correspond
integrals are simplified by using the symmetry of the Ma
wellian and shifting integration variables fromv to V. The
vanishing of the integral of the right side yields

F (0)5$@Kr (0) sin~u2c!2V#P%u . ~20!

Notice that we neededF (0) in the right side of Eq.~15! for
this equation to have an appropriate solution. In turn,F (0)

appeared in this equation due to our choice of the time u
Thus the time unit is dictated by the solvability conditions
the hierarchy of equations generated by the CEM.
r

,

the

e
g
-

it.
f

Inserting now Eq.~20! in Eq. ~15!, we realize that the
right hand side thereof is the partial derivative of some
pression with respect tov. This greatly helps in finding the
solution

r (1)5
e2V2/2

A2p
S V221

2
PKr (0) cos~u2c!

1V„KP$ ṙ (0) sin~u2c!2r (0)ċ cos~u2c!

2@Kr (0) sin~u2c!2V#r (0) cos~u2c!%2Pu…D ,

~21!

which satisfies Eq.~17! and yieldsr (1)50. Notice that a
term of the form ~9! ~satisfying *0

2pPdu50) could have
been added to the solution~21!. However, all such terms ar
already contained in the ansatz~13! with P5P(u,V,t;e),
and we shall therefore omit them.

To find F (1), we insert Eq.~21! in Eq. ~16! and use the
solvability condition for this equation. Simplifications aris
from the identities

E
2`

`

r t
(1)dv5

]

]tE2`

`

r (1)dv50

and

E
2`

`

vru
(1)dv5

]

]uE2`

`

vr (1)dv.

The result is

F (1)5
]

]u
„Pu1$@Kr (0) sin~u2c!2V1ċ#Kr (0) cos~u2c!

2Kṙ (0) sin~u2c!%P…. ~22!

In this expression,ṙ (0) and ċ can be found from their defi-
nitions and Eq.~20!. Integration by parts yields

ṙ (0)1 ir (0)ċ5
Kr (0)

2
~12^e2i (u2c)&!1 i ^Vei (u2c)&⇒

ṙ (0)5Kr (0)^sin2~u2c!&2^V sin~u2c!&,

r (0)ċ5^V cos~u2c!&2
Kr (0)

2
^sin@2~u2c!#&, ~23!

where

^ f ~u,V!&[E
0

2pE
2`

`

f ~u,V!P~u,V,t;e!dug~V!dV.

~24!

We can now insert Eqs.~20!, ~22!, and~23! into Eq. ~14! to
obtain the sought Smoluchowski equation forP:
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Pt2
]

]u H F @Kr (0) sin~u2c!2V#@11eKr (0) cos~u2c!#

2eK cos~u2c!S Kr (0)

2
^sin@2~u2c!#&

2^V cos~u2c!& D2eK sin~u2c!@Kr (0)^sin2~u2c!&

2^V sin~u2c!&#GP1ePuJ 50. ~25!

Restoring the original dimensional units, this equation
comes

Pt2
]

]u H F @Kr sin~u2c!2V#@11mKr cos~u2c!#

2mK cos~u2c!S Kr

2
^sin@2~u2c!#&

2^V cos~u2c!& D2mK sin~u2c!@Kr ^sin2~u2c!&

2^V sin~u2c!&#GP1DPuJ 50. ~26!

to be solved together with Eq.~11!, definition ~24!, normal-
ization condition~12!, 2p-periodicity in u, and appropriate
initial conditions.

Equation~26! is the main result of this section. Ifm50,
the usual Kuramoto model for phase oscillators is recove
Comparing this result with Eq.~5! of Honget al., we see that
the second and third terms proportional tom in the drift
current were missing and that their equation contained
additional diffusive term. The latter would be ordere2 in our
scheme. These differences can be tracked to the fact
Hong et al. followed a previous paper@14#, whose authors
used a moment method with arbitrary closure assumption
derive the Smoluchowski equation.

III. DERIVATION OF BIFURCATION EQUATIONS
BY THE CHAPMAN-ENSKOG METHOD

First of all, we shall illustrate the application of the CE
to a well-known case: deriving the amplitude equation
the usual Hopf bifurcation. Next the much more complica
calculation of the amplitude equation for the tricritical poi
of the bimodal Kuramoto model will be tackled.

A. The usual Hopf bifurcation

Let us consider a system ofn ordinary differential equa-
tions for an unknownn-component vectoru(t;a):

du

dt
5 f ~u;a!; ~27!

a is the bifurcation parameter. We shall assume thatu50 is
a linearly stable solution ifa,0 and that it is unstable i
a.0. All eigenvalues ofL(a)[] f (0,a)/]u exceptl(a)
and its complex conjugate have negative real parts in
neighborhood ofa50. We havel(a); iv01al8(0) asa
→0, with Re l8(0).0. The linearized equation of~27!
aboutu50, a50 has the solutionu5Af0eiv0t1c.c., plus
-

d.

n

at

to

r
d

e

terms that decay exponentially fast to zero as time increa
f0 is the eigenvector corresponding toiv0 andA is a com-
plex constant.

To apply the CEM to this problem, we shall assume

a5a1«1a2«21O~«3!,

u5«A~ t;«!f0eiv0t1c.c.1 (
n52

`

«nu(n)~ t;A,Ā!, ~28!

where the amplitudeA obeys the ansatz

dA

dt
5 (

n51

`

«nF (n)~A,Ā!. ~29!

Here Ā is the complex conjugate ofA and c.c. means the
complex conjugate of the preceding term. The paramete«
measures the size of the bifurcating amplitude and its r
tion to the bifurcation parametera is determined by finding
the coefficientsa j . Notice thatA varies slowly with time~on
a scalee2t, as we will see!. The functionsu(n) depend on a
fast scalet corresponding to stable exponentially decayi
modes, andon a slow time scale through their dependen
on A. All terms in Eq. ~28! that decrease exponentially i
time will be omitted.an andF (n) are determined so that th
solutionsu(n) are bounded ast→` ~on the fast time scale!,
for fixed A. Substitution of Eq.~28! and ~29! in Eq. ~27!
yields the following hierarchy of linear equations:

@L~0!2 iv0#f050,

du(2)

dt
2L~0!u(2)52F (1)f0eiv0t1c.c.1a1L8~0!f0Aeiv0t

1c.c.1
1

2
f uu~0;0!:~Af0eiv0t1c.c.!2,

~30!

du(3)

dt
2L~0!u(3)5a1~••• !2F (2)f0eiv0t1c.c.

1a2L8~0!f0Aeiv0t1c.c.

1
1

2
f uu~0;0!:u(2)~Af0eiv0t1c.c.!

1
1

6
f uuu~0;0!:~Af0eiv0t1c.c.!3,

~31!
and so on. Heref uu(0;0) is ann3n matrix and the colon
means tensor contraction, etc. The first equation holds id
tically due to the definitions off0 and iv0. The other equa-
tions should be solved for boundedu(n) as t→`. Their so-
lutions should not contain terms of the formBf0eiv0t1c.c.,
solving the corresponding linear homogeneous problem.
reason for this latter requirement is that all such terms
already contained inA(t;«).

Equation~30! yields

a150, F (1)50,

u(2)5
A2

2
ei2v0t@2iv0I 2L~0!#21f uu~0;0!:f0

2

1c.c.2uAu2L~0!21f uu~0;0!:f0f 0̄. ~32!



b

ef

. I
he

it

on
tia
a

ra-
e.,

-
a

s
is
two
ted

de
an-

rms

ar

4866 PRE 62L. L. BONILLA
(I is the identity matrix of ordern.! Solvability of Eq. ~31!
yields

F (2)5a2l8~0!A2mAuAu2, ~33!

where

l8~0!5
^f0

† ,L8~0!f0&

^f0
† ,f0&

, ~34!

^f0
† ,f0&m5

1

2
^f0

† , f uu~0;0!:f 0̄

3@L~0!2 i2v0I #21f uu~0;0!:f0
2&

1^f0
† , f uu~0;0!:f0L~0!21f uu~0;0!:f0f 0̄ &

2
1

2
^f0

† , f uuu~0;0!:f0
2f 0̄ &. ~35!

Heref0
† is the eigenvector corresponding to the adjoint pro

lem

L†~0!f0
†5 iv0f0

† .

Substituting these results in Eq.~29!, the following ampli-
tude equation is found:

dA

dt
5«2a2l8~0!A2«2mAuAu21O~«3!. ~36!

These formulas for the bifurcation equation and its co
ficients have been obtained many times before; see@16# for
an equivalent explicit determination ofm, whose real part
decides whether the bifurcation is sub- or supercritical
Rem50, we should calculate higher order terms in t
Chapman-Enskog expansion~29!. The systematic way in
which the CEM yields such terms is a great advantage w
respect to other methods such as multiple scales@15#.

Similar ideas can be used to derive amplitude equati
for pattern forming systems governed by partial differen
equations@17#. In such cases, we have to rescale space v
ables appropriately and assume that theF (n) also depend on
spatial derivatives ofA.
-

-

f

h

s
l
ri-

B. Symmetric Takens-Bogdanov bifurcation

Our starting point in this subsection is the standard Ku
moto model with bimodal natural frequency distribution, i.
Eq. ~26! with m50 and g(V)5 1

2 @d(V2V0)1d(V
1V0)#. The phase diagram of the incoherent solutionP
51/(2p) was depicted in Fig. 1 of@3#. At the tricritical point
P5(K/D54,V0 /D51) a branch of Hopf bifurcations coa
lesces with a branch with stationary bifurcations and
branch of homoclinic orbits, in an O(2)-symmetric Takens-
Bogdanov bifurcation point. A method of multiple scale
was used in@3# to analyze this complicated bifurcation. Th
method was not completely satisfactory because it led to
amplitude equations whose solutions were later interpre
as the two terms of a normal form expansion@3#. Let us
show how a modified CEM leads directly to the amplitu
equation. Near the tricritical point, we may define an exp
sion parameter« so that

K5Kc1K2«21O~«3!, V05V0c1V2«21O~«3!

~Kc54D,V0c5D !. ~37!

The basic slow time scale near the tricritical point isT5«t,
and the method of multiple scales shows that resonant te
appear in the equations of order«3 and higher@3#. Borrow-
ing from the results of that reference~which includes making
an exponential ansatz forP), we shall make the following
Chapman-Enskog ansatz:

P~u,V,t;«!5
1

2p
expS «

A~T;«!

D1 iV
eiu1c.c.

1(
j 52

4

« js j~u,t,T;A!1O~«5!D , ~38!

ATT5F (0)~A!1«F (1)~A!1O~«2!. ~39!

Terms that decay exponentially on the fast time scalet will
be systematically omitted. The equation forA is second order
@not first order like Eq.~29!# because resonant terms appe
at O(«3) for the first time and they are proportional toATT.
Inserting these equations in Eq.~26! ~with m50), we obtain
the following hierarchy of linear equations:
LS s21
s1

2

2 D 524D]u~s1 Im e2 iu^eiu8,s1&!2
ATeiu

D1 iV
1c.c.,

~40!

E
0

2pS s21
s1

2

2 Ddu50,

LS s31s1s21
s1

2

6 D 524D]uFs1 Im e2 iuK eiu8,s21
s1

2

2 L 1S s21
s1

2

2 D Im e2 iu^eiu8,s1&1V2 Im e2 iu^eiu8,s1&8G
2K2]u Im e2 iu^e2 iu8,s1&2]TS s21

s1
2

2 D ,

~41!

E
0

2pS s31s1s21
s1

2

6 Ddu50,
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LS s41s1s31
s2

2

2
1

s1
2s2

2
1

s1
4

4! D 524D]uFs1 Im e2 iuK e2 iu8,s31s1s21
s1

3

6 L 1S s31s1s21
s1

3

6 D Im e2 iu^eiu8,s1&

1V2 Im e2 iuK eiu8,s21
s1

2

2 L 8
1V2s1 Im eiu^eiu8,s1&81S s21

s1
2

2 D
3Im e2 iuK eiu8,s21

s1
2

2 L G2K2]uS Im e2 iuK eiu8,s21
s1

2

2 L
1s1 Im e2 iu^eiu8,s1& D 2]TS s31s1s21

s1
2

2 D ,

~42!

E
0

2pS s41s1s31
s2

2

2
1

s1
2s2

2
1

s1
4

4! Ddu50.
d

r

-
ce
fo

de-
Here

Lsn5~] t2D]u
21V]u!sn14D]u~ Im e2 iu^eiu8,sn&!,

~43!

and we have used the abbreviationss15A(T;«)eiu/(D
1 iV)1c.c. and

^a~u,V!,b~u,V!&

5
1

2pE0

2pE
2`

1`

a~u,V!b~u,V!g~V!dudV,

~44!

^a~u,V!,b~u,V!&8

5
1

2pE0

2pE
2`

1`

a~u,V!b~u,V!gV0
8 ~V!dudV,

~45!

where

gV0
8 ~V!5

1

2
@d8~V1V0!2d8~V2V0!#~V05V0c5D !.

~46!

The ansatz~39! has not yet been inserted in Eqs.~40! and
~42! in order not to complicate these equations further. W
shall keep in mind that these equations will have to be mo
fied later when the solution of Eq.~40! is inserted in Eqs.
~41! and ~42!. The linear equations in the preceding hiera
chy should have solutions periodic inu. A solution of the
homogeneous equationLU50 could be added to the solu
tions of the linear nonhomogeneous equations in the pre
ing hierarchy. However, all such terms are to be omitted,
the amplitudeA(T;«) already takes care of them.

The solution of Eq.~40!,

LS s21
s1

2

2 D 52
AT

D1 iV
eiu1c.c.1

2A2

D1 iV
e2iu1c.c.,

~47!

is
e
i-

-

d-
r

s21
s1

2

2
52

AT

~D1 iV!2
eiu1c.c.1

A2

~D1 iV!~2D1 iV!
e2iu

1c.c.. ~48!

Note that one term proportional toeiu/(D1 iV) and other
terms decaying on the fast scalet are solutions ofLU50
and could have been added to Eq.~48!. According to what
was said above, all such terms are to be omitted.

We now insert Eq.~48! in Eqs. ~41! and ~42! together
with the CE ansatz~39!. The solution of Eq.~41! is

s31s1s21
s1

3

6
5S K224V2

4D~D1 iV!
A1

F (0)

~D1 iV!3

2
AuAu2

~D1 iV!2~2D1 iV!
D eiu1c.c.

2
AAT@1/~D1 iV!11/~2D1 iV!#

~D1 iV!~2D1 iV!
e2iu

1c.c.1
A3e3iu

~D1 iV!~2D1 iV!~3D1 iV!

1c.c. ~49!

From this we obtains3, and finally, from Eq.~42!, s4. To
obtain the leading order approximation, we only need to
termineA(T;«). Now, Eq.~49! holds provided that thenon-
resonance condition~needed to remove secular terms!

K 1

D1 iV
,P~V,T;A!L 50 ~50!

holds, whereP(V,T;A) denotes the coefficient ofeiu on the
right hand side of Eq.~41! @3#. Equation~50! yields

F (0)5
D

2
~K224V2!A1

2

5
uAu2A. ~51!
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The functionF (1) is determined from a similar nonreso
nance condition for Eq.~42!: the coefficientQ(V,T;A) of
eiu on the right hand side of Eq.~42! should also satisfy Eq
~50!. The result is

F (1)5
K2

2
AT2

~ uAu2A!T

5D
2

23

25D
uAu2AT . ~52!

Insertion of Eqs.~51! and~52! into Eq.~39! yields the sought
amplitude equation:

ATT2
D

2
~K224V2!A2

2

5
uAu2A

5«S K2

2
AT2

23

25D
uAu2AT2

1

5D
~ uAu2A!TD1O~«2!.

~53!

This equation is the scaled ‘‘normal form’’ studied by Da
gelmayr and Knobloch in@18# @cf. their Eqs.~3.3!, p. 2480#.
The general analysis developed in that reference for gen
scaled normal forms was employed in@3# to study Eq.~53!
and will not be repeated here.

IV. CONCLUSIONS

We have applied a modified Chapman-Enskog metho
two problems related to Kuramoto models of synchroni
tion of globally coupled phase oscillators. First of all, w
found a consistent two-term Smoluchowski approxim
equation for a model of oscillators with inertia in the limit o
small inertia ~as mD→01). Second, we modified the
f
,

s

D

J.

al
ral

to
-

e

Chapman-Enskog method to find directly the scaled nor
form corresponding to the O(2)-symmetric Takens-
Bogdanov bifurcation at the tricritical point of a standa
Kuramoto model with bimodal distribution of oscillator natu
ral frequencies. Key ingredients of the CEM are~i! solving a
zeroth order problem whose solution is determined up
certain amplitude functions;~ii ! assuming an expansion fo
the solution all of whose higher order terms depend
~slow! time through the amplitude functions only;~iii ! as-
suming that the right sides of the equations of motion for
amplitude functions are expansions whose coefficients
functionals of the amplitudes. These coefficients are de
mined by appropriate solvability conditions for the hierarc
of linear equations resulting from insertion of all these a
sumptions in the original equations. Collecting the desi
number of coefficients, we obtain approximate equations
motion for the amplitude functions as the result of t
method. I believe that the techniques explained in the pre
paper will be useful in many other problems of physic
interest.
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